Antidegradation Examples Using the Revised Rules for the Great Lakes Basin Revised June 30, 2008

New Industrial Discharger

A new manufacturing facility will have the following pollutants in their discharge: Copper, Lead, Nickel, TCE and Zinc.

Discharger Design Flow = 2.0 MGD Stream Design Flow = 56.0 MGD

The pollutants that will receive effluent limits based on the reasonable potential to exceed a WQBEL using the procedures found in 327 IAC 5-2-11.5 are: Copper and Zinc. The other pollutants do not have a reasonable potential to exceed the WQBEL. Only the pollutants that have a reasonable potential to exceed the WQBEL or that have a TBEL will be included in the antidegradation review.

Table 1
RPE Analysis

THE THIRT IS IS								
Projected Eff	Projected Effluent Quality (PEQ)			Preliminary Effluent Limits (PEL)				
Monthly	Daily		Monthly	Daily				
<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>			
62.0	62.0	ug/l	34.0	69.0	ug/l			
120.0	120.0	ug/l	140.0	282.0	ug/l			
490.0	490.0	ug/l	780.0	1560.0	ug/l			
285.0	285.0	ug/l	270.0	550.0	ug/l			
19.0	19.0	ug/l	393.0	790.0	ug/l			
	Monthly <u>Average</u> 62.0 120.0 490.0 285.0	Projected Effluent Quality (PEQ Monthly Daily Monthly Average Maximum 62.0 62.0 120.0 120.0 490.0 490.0 285.0 285.0	Projected Effluent Quality (PEQ) Monthly Daily Average Maximum Units 62.0 ug/l 120.0 120.0 ug/l 490.0 490.0 ug/l 285.0 285.0 ug/l	Projected Effluent Quality (PEQ) Preliminary Monthly Daily Monthly Average Maximum Units Average 62.0 62.0 ug/l 34.0 120.0 120.0 ug/l 140.0 490.0 490.0 ug/l 780.0 285.0 285.0 ug/l 270.0	Projected Effluent Quality (PEQ) Preliminary Effluent Limits (FM) Monthly Daily Monthly Daily Average Maximum Units Average Maximum 62.0 62.0 ug/l 34.0 69.0 120.0 120.0 ug/l 140.0 282.0 490.0 490.0 ug/l 780.0 1560.0 285.0 285.0 ug/l 270.0 550.0			

The effluent limits based on technology (federal effluent guidelines or BPJ/BAT) are:

Table 2 **TBELS** Quantity or Loading Quality or Concentration Monthly Daily Monthly Daily Parameter <u>Average</u> Maximum **Units** Average Maximum Units **Basis** Copper 1.6 3.2 lbs/day N.A. N.A. ug/l ELG Lead 2.1 4.2 lbs/day N.A. N.A. ug/l **ELG** Nickel 5.3 10.6 lbs/day N.A. N.A. **ELG** ug/l lbs/day N.A. Zinc 8.4 16.8 ELG N.A. ug/l **TCE** N.A. 0.083 lbs/day N.A. 5.0 ug/l BPJ/BAT The effluent limits based on the De minimis Lowering of Water Quality are:

Table 3								
			De Minim	<u>is</u>				
	Quantity or Loa	nding		Quality or Con				
_	Monthly	Daily		Monthly	Daily			
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Basis</u>	
Copper	0.57	1.15	lbs/day	34.0	69.0	ug/l	WQBEL	
Lead	1.12	2.25	lbs/day	67.0	135.0	ug/l	WQBEL	
Nickel	5.3	10.6	lbs/day	N.A.	N.A.	ug/l	DTBEL	
Zinc	4.5	9.2	lbs/day	270.0	550.0	ug/l	WQBEL	
TCE	N.A.	0.083	lbs/day	N.A.	5.0	ug/l	DTBEL	
			Table 4					
			Final Limi	<u>its</u>				
	Quantity or Loa	•		Quality or Concentration				
ъ.	Monthly	Daily	TT 1.	Monthly	Daily	TT 1.	ъ.	
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Basis</u>	
Copper	0.57	1.15	lbs/day	34.0	69.0	ug/l	WQBEL	
Lead	1.12	2.25	lbs/day	67.0	135.0	ug/l	WQBEL	
Nickel	5.3	10.6	lbs/day	N.A.	N.A.	ug/l	WQBEL	
Zinc	4.5	9.2	lbs/day	270.0	550.0	ug/l	WQBEL	
TCE	N.A.	0.083	lbs/day	N.A.	5.0	ug/l	DTBEL	

If the discharger agrees to accept effluent limits that are less than or equal to the limits based on the De minimis Lowering of Water Quality, the discharge will not be considered to be a significant lowering of water quality and no further antidegradation action will be required.

If the discharger wants or needs to discharge any of these substances at a level that is greater than the limits based on the De minimis, then they must submit an antidegradation demonstration unless the activity causing the new or increased discharge is considered by rule to not be a significant lowering of water quality. If the activity causing the new or increased discharge is considered by rule to not be a significant lowering of water quality, then they must demonstrate that it meets one of the exemptions.

Since this is the first antidegradation demonstration or de minimis evaluation in the area of the discharge, the representative background concentration established at this time will be the benchmark for any future antidegradation reviews. The representative background concentration for the pollutants are as follows:

<u>List 1 - Representative Background Concentration (Geometric Mean of the Dataset)</u>

 $Copper-2.7\ ug/l$

Lead - 1.6 ug/l

Nickel - 2.7 ug/l

Zinc - 8.3 ug/l

TCE - 0.0 ug/l

<u>List 2 - The Benchmark Unused Loading Capacity</u>

(Chronic Aquatic Water Quality Criterion mg/l – Representative Background Concentration mg/l) x Stream Design Flow in million gallons per day (MGD) x 8.34 lbs/gallon of water = Unused Loading Capacity in lbs/day.

Copper $-(0.021 \text{ mg/l} - 0.0027 \text{ mg/l}) \times 56 \text{ MGD} \times 8.34 = 8.56 \text{ lbs/day}$ Lead $-(0.01475 - 0.0016) \times 56 \text{ MGD} \times 8.34 = 6.14 \text{ lbs/day}$ Nickel $-(0.12088 - 0.0027) \times 56 \text{ MGD} \times 8.34 = 55.2 \text{ lbs/day}$ Zinc $-(0.27495 - 0.0083) \times 56 \text{ MGD} \times 8.34 = 124.5 \text{ lbs/day}$ TCE $-(0.06 - 0.0) \times 56 \text{ MGD} \times 8.34 = 28.0 \text{ lbs/day}$

Existing Industrial Discharger

An existing manufacturing facility has the following pollutants in their discharge: Copper, Lead, Nickel, TCE and Zinc.

Existing Design Flow = 2.0 MGD Proposed Design Flow = 4.0 MGD Stream Design Flow = 56.0 MGD

Their existing permit limits are:

Table 5
Existing Permit Limits

	Quantity or Load	Quantity or Loading			centration		
	Monthly	Daily		Monthly	Daily		
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	Maximum	<u>Units</u>	Basis
Copper	0.57	1.15	lbs/day	34.0	69.0	ug/l	WQBEL
Lead	2.1	4.2	lbs/day	N.A.	N.A.	ug/l	TBEL
Nickel	5.3	10.6	lbs/day	N.A.	N.A.	ug/l	TBEL
Zinc	4.5	9.2	lbs/day	270.0	550.0	ug/l	WQBEL
TCE	N.A.	0.083	lbs/day	N.A.	5.0	ug/l	TBEL

The pollutants that will receive limits based on the reasonable potential to exceed a WQBEL are: Copper, Lead, Nickel and Zinc. TCE does not have a reasonable potential to exceed the WQBEL.

<u>Table 6</u> <u>RPE Analysis for Existing + Expansion</u>

	Projected Efflue	ent Quality (PEQ)		Preliminary	Preliminary Effluent Limits (PEL)			
	Monthly	Daily		Monthly	Daily			
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>		
Copper	62.0	62.0	ug/l	34.0	69.0	ug/l		
Lead	120.0	120.0	ug/l	79.0	159.0	ug/l		
Nickel	490.0	490.0	ug/l	440.0	880.0	ug/l		
Zinc	285.0	285.0	ug/l	270.0	550.0	ug/l		
TCE	19.0	19.0	ug/l	221.0	440.0	ug/l		

The effluent limits based on technology are:

<u>Table 7</u> <u>TBELs for Existing + Expansion</u>

	Quantity or Loading			Quality or Concentration		
	Monthly	Daily		Monthly	Daily	
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>
_						_
Copper	3.2	6.4	lbs/day	N.A.	N.A.	ug/l
Lead	4.2	8.4	lbs/day	N.A.	N.A.	ug/l
Nickel	10.6	21.2	lbs/day	N.A.	N.A.	ug/l
Zinc	16.8	33.6	lbs/day	N.A.	N.A.	ug/l
TCE	N.A.	0.167	lbs/day	N.A.	5.0	ug/l

The effluent limits for the increase based on the De minimis Lowering of Water Quality are:

<u>Table 8</u> De Minimis Increase

	Quantity or Load	ding		Quality or Con	centration		
	Monthly	Daily		Monthly	Daily		
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	Basis
Copper	0.57	1.15	lbs/day	34.0	69.0	ug/l	WQBEL
Lead	1.12	2.25	lbs/day	67.0	135.0	ug/l	WQBEL
Nickel	5.3 [7.3]	10.6 [14.7]	lbs/day	N.A.	N.A.	ug/l	DTBEL
Zinc	4.5	9.2	lbs/day	270.0	550.0	ug/l	WQBEL
TCE	N.A. [3.7]	0.083 [7.3]	lbs/day	N.A.	5.0	ug/l	DTBEL
[] WOBEL	Mass		·			_	

<u>Table 9</u> Final Limits = Existing Limits + New De minimis Increase

Quantity or Lo	oading	Qua	ality or Conce	entration			
_	Monthly	Daily		Monthly	Daily		
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	Basis
Copper	1.04	2.3	lbs/day	34.0	69.0	ug/l	Existing + WQBEL
Lead	3.22	6.45	lbs/day	96.5	193.0	ug/l	Existing + WQBEL
Nickel	10.6	21.2	lbs/day	N.A.	N.A.	ug/l	Existing + DTBEL
Zinc	9.0	18.4	lbs/day	270.0	550.0	ug/l	Existing + WQBEL
TCE	N.A.	0.167	lbs/day	N.A.	5.0	ug/l	Existing + DTBEL

If the discharger agrees to accept effluent limits that are less than or equal to these limits, the discharge will not be considered to be a significant lowering of water quality and <u>no further action will be required</u>. If the discharger wants or needs to discharge any of these substances at a level that is greater than the limits based on the De minimis, then they must submit an antidegradation demonstration unless the activity causing the new or increased discharge is considered by rule to not be a significant lowering of water quality. If the activity causing the

new or increased discharge is considered by rule to not be a significant lowering of water quality, then they must demonstrate that through an exemption justification.

The representative background concentrations at the time of this request are:

List 3 Representative Background Concentration at the time of the request to increase

```
Copper = 2.9 \text{ ug/l} - 2.7 \text{ ug/l} = 0.2 / 2.7 = 7.4\% Increase Lead = 1.7 \text{ ug/l} - 1.6 \text{ ug/l} = 0.1 / 1.6 = 6.3 \% Increase Nickel = 2.8 \text{ ug/l} - 2.7 \text{ ug/l} = 0.1 / 2.7 = 3.7 \% Increase Zinc = 8.7 \text{ ug/l} - 8.3 \text{ ug/l} = 0.4 / 8.3 = 4.8\% Increase TCE = 0.0 \text{ ug/l} = 0.0\% Increase
```

The New Unused Loading Capacity is:

List 4 - The New Unused Loading Capacity at the time of the request to increase

(Chronic Aquatic Water Quality Criterion mg/l – Representative Background Concentration mg/l) x Stream Design Flow in million gallons per day (MGD) x 8.34 lbs/gallon of water = Unused Loading Capacity in lbs/day.

```
 \begin{array}{l} \text{Copper} - \; (0.021 \; \text{mg/l} - 0.0029 \; \text{mg/l}) \; x \; 56 \; \text{MGD} \; x \; 8.34 = \; \underline{8.45 \; \text{lbs/day}} \\ \text{Percent of Unused Loading Capacity Utilized} = 8.56 - 8.45 = .11 / 8.56 = 1.3\% \\ \text{Lead} - \; (0.01475 - 0.0017) \; x \; 56 \; \text{MGD} \; x \; 8.34 = \; \underline{6.09 \; \text{lbs/day}} \\ \text{Percent of Unused Loading Capacity Utilized} = 6.14 - 6.09 = .05 / 6.14 = 0.8\% \\ \text{Nickel} - \; (0.12088 - 0.0028) \; x \; 56 \; \text{MGD} \; x \; 8.34 = \; \underline{55.15 \; \text{lbs/day}} \\ \text{Percent of Unused Loading Capacity Utilized} = \; 55.2 - 55.15 = .05 / 55.2 = 0.09\% \\ \text{Zinc} - \; (0.27495 - 0.0087) \; x \; 56 \; \text{MGD} \; x \; 8.34 = \; \underline{124.35 \; \text{lbs/day}} \\ \text{Percent of Unused Loading Capacity Utilized} = \; 124.5 - 124.35 = .15 / 124.5 = 0.1\% \\ \text{TCE} - \; (0.06 - 0.0) \; x \; 56 \; \text{MGD} \; x \; 8.34 = \; 28.0 \; \text{lbs/day} \\ \text{Percent of Unused Loading Capacity Utilized} = 0.0\% \\ \end{array}
```

New Sanitary Discharger

A new Regional Sewer District has been formed to treat wastewater from two small towns that have been on septic systems. The RSD is building a new 0.5 MGD extended aeration treatment system to treat the wastewater from the two small towns. The receiving stream has a design flow of 1 MGD.

The need to have effluent limits for ammonia as N are based on the reasonable potential to exceed the WQBELs. The WQBELs are as follows:

Table 10
RPE Analysis

	RPE Analysis							
	Quantity or Loa		Quality or Concentration					
	Monthly	Daily		Monthly	Weekly			
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	Average	<u>Units</u>		
Ammonia as N								
Summer	9.2	20.9	lbs/day	2.2	5.0	mg/l		
Winter	9.6	20.9	lbs/day	2.3	5.0	mg/l		

The effluent limits for Ammonia as N, Total Suspended Solids, CBOD, and Phosphorus are based on the DTBEL are:

<u>Table 11</u> <u>Technology Based Limits</u>

	Quantity or Load	Quantity or Loading			Quality or Concentration		
<u>Parameter</u>	Monthly Average	Daily <u>Maximum</u>	<u>Units</u>	Monthly Average	Weekly Average	<u>Units</u>	
CBOD ₅	41.7	62.6	lbs/day	10.0	15.0	mg/l	
TSS	41.7	62.6	lbs/day	10.0	15.0	mg/l	
Phosphorus	4.2		lbs/day	1.0		mg/l	
Ammonia						_	
as N	4.6	6.9	lbs/day	1.1	1.65	mg/l	

Table 12
De minimis Limits

	Quantity or Loading			Quality or Concentration		
	Monthly	Daily		Monthly	Weekly	
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	<u>Average</u>	<u>Units</u>
CDOD	1010	1.550	11 / 1	10.0	1.7.0	ø
$CBOD_5$	104.3	166.8	lbs/day	10.0	15.0	mg/l
TSS	125.1	187.7	lbs/day	10.0	15.0	mg/l
Ammonia						
as N	4.6	6.9	lbs/day	1.1	1.65	mg/l
Phosphorus	4.2		lbs/day	1.0		mg/l

If the discharger agrees to accept effluent limits that are less than or equal to these limits, the discharge will not be considered to be a significant lowering of water quality and <u>no further</u> action will be required.

If the discharger wants or needs to discharge any of these substances at a level that is greater than the limits based on the De minimis, then they must submit an antidegradation demonstration application unless the activity causing the new or increased discharge is considered by rule to not be a significant lowering of water quality.

If the activity causing the new or increased discharge is considered by rule to not be a significant lowering of water quality, then they must submit a Non-significant lowering of water quality application.

Since this is the first antidegradation demonstration or de minimis evaluation in the area of the discharge, the representative background concentration established at this time will be the benchmark for any future antidegradation reviews.

Existing Sanitary Discharger

An existing community is expanding their existing extended aeration treatment system from 5.0 MGD to 7.0 MGD to treat the wastewater from the expansion of the population in the community. The receiving stream has a flow of 55 MGD.

Their existing effluent limits based on a design flow of 5.0 MGD are:

Table 13

	Existing Limits						
	Quantity or Load	ding		Quality or Cor	Quality or Concentration		
	Monthly	Daily		Monthly	Weekly		
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	<u>Average</u>	<u>Units</u>	
CBOD ₅	1042.5	1668	lbs/day	25.0	40.0	mg/l	
TSS	1251	1876.5	lbs/day	30.0	45.0	mg/l	
Ammonia							
as N							
Summer	130.1	196.0	lbs/day	3.12	4.7	mg/l	
Winter	249.0	354.5	lbs/day	5.97	8.5	mg/l	
Phosphorus	41.7		lbs/day	1.0		mg/l	

The limits for the increase in flow of 2 MGD based on the De minimis Lowering of Water Quality are:

Table 14

	De minimis Limits for the Increase								
	Quantity or Load	ing		Quality or Concentration					
	Monthly	Daily		Monthly	Weekly				
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	Average	<u>Units</u>			
CBOD ₅	166.8	250.2	lbs/day	10.0	15.0	mg/l			
TSS	166.8	250.2	lbs/day	10.0	15.0	mg/l			
Ammonia									
as N	18.3	27.5	lbs/day	1.1	1.65	mg/l			
Phosphorus	16.7		lbs/day	1.0		mg/l			

The final effluent limits for the increase of 5 to 7 MGD based on the De minimis Lowering of Water Quality are:

<u>Table 15</u> <u>Existing Limits + De minimis Limits for the Increase</u>

	Existing Limits + De minimis Limits for the increase					
	Quantity or Loading			Quality or Concentration		
	Monthly	Daily		Monthly	Weekly	
<u>Parameter</u>	<u>Average</u>	<u>Maximum</u>	<u>Units</u>	<u>Average</u>	<u>Average</u>	<u>Units</u>
CBOD ₅	1209.3	1918.2	lbs/day	20.7	32.9	mg/l
TSS	1417.8	2126.7	lbs/day	24.3	36.4	mg/l
Ammonia						
as N						
Summer	131.4	223.5	lbs/day	2.3	3.8	mg/l
Winter	267.3	382.0	lbs/day	4.6	6.5	mg/l
Phosphorus	58.4		lbs/day	1.0		mg/l

If the discharger agrees to accept effluent limits that are less than or equal to these limits, the discharge will not be considered to be a significant lowering of water quality and <u>no further action will be required</u>.

If the discharger wants or needs to discharge any of these substances at a level that is greater than the limits based on the De minimis, then they must submit an antidegradation demonstration application unless the activity causing the new or increased discharge is considered by rule to not be a significant lowering of water quality.

If the activity causing the new or increased discharge is considered by rule to not be a significant lowering of water quality, then they must submit a Non-significant lowering of water quality application.